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Abstract.

Local valley winds in four major valleys on the southern slope of the Nepal Himalayas are studied by means of high

resolution meteorological modelling. The Weather Research and Forecasting model is run with a 1 km horizontal grid spacing

covering a 5 day period in December 2014. Model evaluation against meteorological observations from three automatic weather

stations in Khumbu valley (one of the four valleys) shows a good agreement between the modelled and observed daily cycle5

of the near-surface wind speed and direction. Well defined daytime up-valley winds are found in all of the four valleys. The

night-time along-valley winds are weak in magnitude and flow mostly in the up-valley direction. The diurnal cycle of the

winds is interrupted more during the days with large-scale northerly winds than during the westerlies which is most likely due

to channelling of the above-valley winds into the valley atmosphere. Differences in the daytime up-valley winds are found

between the valleys and their parts. Since the valleys are under similar large-scale forcing, the differences are assumed to be10

due to differences in the valley topographies. Parts of the valleys with steep valley floor inclination (2–5 degrees) are associated

with weaker and shallower daytime up-valley winds compared to the parts which have nearly flat valley floors (<1 degrees). In

the four valleys, the ridge heights also increase along the valley, meaning that the valley floor inclination does not necessarily

lead to a reduction in the volume of the valley atmosphere. This way the dominant driving mechanism of the along-valley

winds could shift from the valley volume effect to buoyant forcing due to the inclination. Two of the valleys have a 1 km high15

barrier in their entrances between the valley and the plain. Winds at the valley entrances of these two valleys are weaker when

comparing to the open valley entrances. Strong and shallow winds, resembling down-slope winds, are found on the lee-side

slope of the barrier followed by weaker and deeper winds at the valley entrance, 20 km towards the valley from the barrier.
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1 Introduction

Day-to-day weather in mountain valleys is affected by thermally driven local winds that commonly form under clear skies. The20

formation of these winds are sensitive to, for example, any large-scale forcing (Whiteman and Doran, 1993) and the geometry

of the valley topography (Wagner et al., 2015) which makes them unique for each and every valley. Plain-to-valley winds,

and further along-valley winds, stem from the uneven warming of the valley atmosphere and the air above the adjacent plain.

The temperature difference causing the along-valley winds is explained by the valley volume effect (Whiteman, 2000). For the

same horizontal area above the valley and above the plain, the air volume in the valley is smaller that above the plain. With the25

same given solar heating, the valley atmosphere will warm more than the air above the plain which creates a pressure gradient

between the plain and the valley. The daytime cross-valley winds, on the other hand, are driven by the buoyancy force that

arises from the horizontal temperature difference between the air immediately adjacent to the slopes, which is heated, and the

air on the same horizontal level but away from the slope.

In real valley atmospheres, the mechanisms driving along and cross-valley winds together lead to a three-dimensional valley30

circulation, where during the daytime, the air flows up the slopes and valleys and from the plain into the valley. The daytime

cross-valley circulation consist of up-slope winds in the near-surface layer and subsidence in the valley atmosphere away from

the slopes. Subsidence warming is the dominant mechanisms leading to the heating of the air in the core of the valley in

the morning transition phase whereas the turbulent convective heat flux from the valley floor and the slopes is the dominant

mechanism in the afternoon (Serafin and Zardi, 2010). Similarly, the up-slope winds typically form just after sunrise, peaking35

before noon, whereas the up-valley winds develop later during the day and peak in the afternoon (Whiteman, 2000). Although

in the cross-valley circulation the subsiding air causes local warming in the core of the valley atmosphere, the net effect of the

cross-valley circulation is to export heat out of the valley atmosphere due to the overshooting up-slope winds at the valley crests

(Schmidli, 2013). Due to the heat export, the valley volume effect is considered as the theoretical maximum of the heating of

the valley atmosphere compared to adjacent plain.40

Accurate modelling of these thermally driven winds requires high horizontal resolution, down to at least 1 km grid spacing,

due to their complex structure and sensitivity to the topography (Schmidli et al., 2018). The local valley circulation, and vertical

exchange of heat and momentum between the valley and the free troposphere, is inaccurately modelled in climate models that

are typically run at coarse resolution up to 100–200 km (Rotach et al., 2014). With coarse resolution models, it is also not

possible to simulate accurately the vertical transport of aerosol, emitted in the mountain boundary layer and ventilated by the45

valley winds into the free troposphere. Once in the free troposphere, aerosol are less subject to removal processes, can undergo

chemical transformation and long-range transport in which way the ventilated aerosol can effect areas remote from the actual

valley in which they formed. Since over half of the Earth’s land surface is considered as complex terrain (Rotach et al., 2014),

this creates a high uncertainty e.g. in the global carbon budget and climate change prediction.

This study concentrates on four valleys located in the Nepal Himalayas during a 5 day period in December 2014. Bollasina50

et al. (2002) describes the seasonal variation and climatology of the study area by means of 6 years of meteorological observa-

tions made at the Nepal Climate Observatory – Pyramid station (NCO–P) located close to the base of Mount Everest (marked
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as a black star in Fig. 1b). Based on their observations, December is a favorable period of time for studying the thermally

driven mountain winds in this region, since it is a dry season in the Indian Monsoon cycle.

The local wind patterns in the Khumbu valley (one of the valleys that is investigated in this study) have been studied in55

the past by means of meteorological observations (Inoue, 1976; Bollasina et al., 2002; Ueno and Kayastha, 2001; Ueno et al.,

2008; Shea et al., 2015; Yang et al., 2018) and high-resolution meteorological modelling (Karki et al., 2017; Potter et al., 2018,

2021). Overall, the daily cycle of the along-valley winds in the Khumbu valley are similar between these studies with well

defined daytime up-valley winds and weaker night-time winds flowing either in the up or down-valley direction. A recent study

showed that the Khumbu valley could act as a source of pre-industrial aerosol in the free troposphere – model results indicate60

that the biogenic vapors emitted in the Khumbu valley were oxidized and then transported to free troposphere by the daytime

up-valley winds (Bianchi et al., 2021). They suggest that other similar valleys on the southern slope of the Himalayas would

likewise form and transport biogenic aerosol to the free troposphere. However, the local valley wind systems in the other major

valleys located nearby in this region have not yet been well studied. Therefore, it remains unknown if these other major valleys

have similar along-valley winds as found in the Khumbu valley and thus if they could also act as sources of free tropospheric65

aerosol.

The first aim of this article is to identify the characteristics (wind speed, depth of the flow, diurnal cycle) of the local valley

wind system in four major valleys in the Hindu-Kush Karakoram Himalayan (HKKH) region in the post-Monsoon period.

The second aim is to identify notable differences between the four valleys in terms of their local wind systems. The third aim

is to attempt to explain the causes for the differences in the local winds. These aims are addressed primarily by analysing a70

simulation performed with the Weather Research and Forecasting (WRF) model as the network of meteorological observations

is rather scarce in this region.

The model setup, model evaluation against meteorological observations and diagnostics used in the data analysis are de-

scribed in Sect. 2. The valley topography characteristics are described in Sect. 3. The along and cross-valley wind characteris-

tics in each of the four valleys are described in Sect. 4. The differences in the valley winds between the valleys are discussed75

in Sect. 5 and the conclusions are given in Sect. 6.
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2 Methods

2.1 Weather Research and Forecasting model setup

The Weather Research and Forecasting model (WRF) is a state-of-art numerical weather prediction model that is widely used

both in operational and research purposes. The version used in this study is WRF 3.6.1.80

The simulation used in this study is identical to what Bianchi et al. (2021) analysed in their study. The simulation consists

of four nested domains (referred to as d01 (outer domain), d02, d03 and d04 (inner domain)) that are illustrated in Fig. 1a. The

outer domain covers an area of 3618 by 2997 km and was run with a horizontal grid spacing of 27 km. The horizontal grid

spacing decreases to 9 km (d02), 3 km (d03) and finally to 1 km in the innermost domain that covers an area of 288 by 300

km. All of the domains are run with 61 vertical levels.85

The simulation was initialised using the Climate Forecast System Reanalysis (Saha et al., 2010) which has a horizontal

grid spacing of 0.5◦. The simulation was kept on track by nudging the temperature, horizontal wind components and spe-

cific humidity in the outer domain (d01) towards the reanalysis every 6 hours. The nudging was only performed above the

atmospheric boundary layer. The surface topography is from United States Geological Survey with horizontal resolution of

30 arc seconds (∼ 1 km) and is shown for domains d01 and d04 in Figures 1a and 1b, respectively. An adaptive time-step,90

with a target Courant-Friedrichs-Lewy value of 0.8, was used to keep the simulation numerically stable. For the inner domain

(d04) this means a time-step of approximately 1 second. In addition, sixth order numerical diffusion and w-Rayleigh damp-

ing was applied to the uppermost 5 km. Sub-grid scale processes are parameterised as follows: the Thompson scheme for

microphysics (Thompson et al., 2008), the RRTMG scheme for long-wave and short-wave radiation (Iacono et al., 2008), the

Mellor-Yamada-Janjic (Eta) TKE scheme for boundary-layer turbulence and the Eta Similarity scheme for the surface layer95

(Janjic, 1994). Convection was parameterised based on Kain-Fritsch scheme (Kain, 2004) but only in domains d01 and d02.

The model was run as one continuous five-day simulation initialised at 00:00 UTC (5:45 local time) on the 17th December

2014 and ran until 23:59UTC on the 21st December 2014. The output frequency of the simulation was one hour (d01), 30

minutes (d02), 10 minutes (d03) and 5 minutes (d04).

2.1.1 Model evaluation100

According to recent studies comparing high-resolution WRF simulations to observations in the European Alps (Giovannini

et al., 2014a, b) and in the Himalayas (Potter et al., 2018; Collier and Immerzeel, 2015; Karki et al., 2017) our model setup

is suitable for studying local valley winds within the inner domain in our simulation. However, Collier and Immerzeel (2015)

suggested that their WRF simulation with 1 km horizontal grid spacing is not accurate enough to fully resolve the thermally

driven valley circulations in the narrowest parts (length scales less than 2 km) of the Langtang catchment, which is located105

just outside our innermost WRF domain to the west. This would limit the reliability of the model simulation in the smallest

sub-branches of the main valleys. The valleys we concentrate on have ridge-to-ridge distances of more than 30 km (discussed

in Sect. 3).
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The WRF simulation is evaluated by comparing the modelled near-surface temperature and winds to meteorological obser-

vations from three automatic weather stations (AWS) in the Khumbu valley. The Khumbu valley is shown by the second-left110

yellow line in Fig. 1b. The black star, blue cross, and red cross on the yellow line show the location of the Nepal Climate

Observatory – Pyramid station (NCO–P), Namche AWS and Lukla AWS, respectively. To compare the modelled values to the

observations, model variables were taken from the closest model grid point. The grid point was selected based on the station

and model grid coordinates without the use of any horizontal interpolation or surface height corrections. Further details of the

observation sites can be found in Yang et al. (2018) and http://geonetwork.evk2cnr.org.115

The lowest wind component in the model output is at 10 m above the surface whereas the winds are observed at 5 m height.

NCO–P and Namche AWS are located in open areas whereas Lukla AWS is surrounded by trees, according to the station

photos in http://geonetwork.evk2cnr.org. The threshold wind speed, below which reliable measurements cannot be obtained,

for the anemometers used at all three stations is 0.21 m s−1 for wind speed and 0.15 m s−1 for wind direction. Timesteps

with wind speeds observed below these thresholds are neglected in the comparison. The temperatures are both observed and120

modelled at 2 m height above surface.

The model evaluation is based on the mean absolute error (MAE) (Inness and Dorling, 2012) of the 2 m temperature (2mT)

and near-surface wind speed. MAE is calculated using Eq. 1,

MAE =
1
n

n∑

t=1

|Xwrf (t)−Xobs(t)| (1)

whereXobs(t) andXwrf (t) are the observation at the station and the modelled value in the closest model grid point at the same125

timestep t, respectively. The calculated MAE for 2mT and near-surface wind speeds are presented in Table 1. The comparison

includes the whole 5 day period separated into daytime (06–18 local time) and night-time (18–06 local time). The observations

are provided as hourly averages meaning that the 5 day comparison includes 120 timesteps in total. The number of missing

data points due to lacking data or neglected measurements is listed in Table 1 next to the calculated MAEs. The modelled and

observed 2mT and near-surface winds are shown as a timeseries in Supplementary Figure A1.130

The mean absolute error for 2mT ranges between 1.2–3.0 K with smaller MAE values during daytime than night time at

all three stations (Table 1). At NCO–P, the temperature is underestimated for most of the simulation (Supplementary Figure

Table 1. WRF modelled values compared to near-surface observations in the Khumbu valley. Mean absolute error (MAE) of 2 m temperature

(2mT) and near-surface wind speed (5 m for the observations, 10m for the WRF output) separately for daytime (06–18 local time) and night-

time (18–06 local time). The number following MAE in parentheses is the number of neglected timesteps due to missing observations or

observed wind speed below the anemometer threshold.

2mT MAE Wind speed MAE Station location

Station 06-18LT 18-06LT 06-18LT 18-06LT Coordinates Elevation

NCO-P 2.5 K (0) 2.8 K (0) 3.1 m s−1 (0) 3.8 m s−1 (0) 27.959N 86.813E 5050 m.a.s.l

Namche 1.2 K (0) 1.4 K (0) 3.2 m s−1 (1) 1.4 m s−1 (2) 27.802N 86.715E 3570 m.a.s.l

Lukla 2.4 K (0) 3.0 K (0) 2.1 m s−1 (5) 0.6 m s−1 (9) 27.696N 86.723E 2660 m.a.s.l
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A1). At Namche, better agreement is found between the observed and modelled 2mT than at either NCO–P or Lukla (Table

1 and Supplementary Figure A1). In Lukla, the amplitude of the diurnal cycle is not captured well (Supplementary Figure

A1). The modelled daytime maxima are typically 2 K colder than the observations and the modelled night-time minima are135

approximately 5 K too warm, meaning that the amplitude of the modelled diurnal cycle is too small. However, the timing of the

diurnal cycle is well captured and furthermore, the average 2mT over the whole 5 day period is captured very well; the mean

difference between the model and the observation is less than 0.5 K.

The mean absolute error in the near-surface wind speed ranges between 0.6–3.8 m s−1 (Table 1). At Lukla and Namche,

the difference is larger during daytime whereas the opposite is true at NCO–P. During both day and night, the MAE of wind140

speed is smallest at Lukla. NCO–P and Namche have larger and similar in magnitude MAE in wind speed during the day, but

while the MAE decreases by more than 50% at night at Namche it increases at NCO–P. The diurnal cycle in wind direction is

well captured by the model (Supplementary Figure A1). At Lukla, the observed wind speeds are less than 2 m s−1 during the

whole 5 day period and the modelled wind speeds are notably larger and exhibit a clearer diurnal cycle. The weak observed

winds may be due to sheltering by the nearby trees and thus the Lukla AWS may not be representative of the area covered by145

the closest WRF grid box. However, the stronger wind speeds in the WRF simulation compared to observations, which is also

evident at Namche, may be due to the 5 m height difference between the modelled and observed winds. However, overall the

modelled diurnal cycle of winds, in both magnitude and direction, agrees reasonably well with the observations and hence we

conclude that the WRF simulation is sufficient in simulating the valley winds.
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Figure 1. (a) Topography of the d01 domain and the inner domains d02, d03 and d04 in the WRF simulation. Thin solid lines denote the

country borders. Red stars denote the location of Kathmandu (the furthest east star) and New Delhi. (b) Topography of the d04 domain.

Yellow lines present the valley center lines used in the analysis. Black star indicates the location of the Nepal Climate Observatory – Pyramid

station (NCO–P).
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2.2 Diagnostics150

2.2.1 Valley geometry

In this section we define a number of diagnostics which quantify the topography and geometry of the valleys and thus enables

us to quantitatively compare the four different valleys.

The valley center lines (in yellow in Fig. 1b) were identified using a simple algorithm. The algorithm starts from the valley

top, from a grid point chosen by the user, from where it finds the way down to the valley entrance by choosing the neighbouring155

grid point with the lowest surface height. This procedure continues over and over until the valley entrance is reached (deter-

mined by the user). The yellow lines in Fig. 1b were manually extended from the valley entrance to reach over the adjacent

plain. In the case of the two westernmost valleys – the Gaurishankar and Khumbu valleys - the valley center lines were extended

due south over the perpendicular barrier from the valley entrance instead of continuing with the algorithm until the plain is

reached. The daytime up-valley winds are connected to the plain by winds that propagate over this topographical barrier so it160

is reasonable to follow this line in the analysis (discussed further in Sect. 4).

The ridge lines (not shown) were identified using a similar algorithm, with a small modification to the aforementioned. Now

the algorithm chooses the neighbouring grid point that has the highest surface height but, in addition, is forced to propagate into

the assumed direction of the ridge, chosen by the user based on the topography map. The ridge line determination is a difficult

task, since the valleys have, for example, a couple of Eight-thousander1 around them. However the use of these identified ridge165

lines allows us to approximately estimate the average depth of the valley atmosphere in these valleys.

The valley width is calculating at an elevation of 1000 m above the valley center line. Therefore, the width estimate is the

distance between the west and east wall from the grid points where the elevation is above 1000 m compared to the valley center

line height. The west and east walls are found by moving in a direction perpendicular to the valley centre line. This value does

not give an absolute value for the valley widths, but does provide a comparable number for different parts of each valley.170

2.2.2 Along and cross-valley wind components

Since the valleys are not exactly north-south orientated at every point in the along-valley direction, the meridional and zonal

winds in the model output can not be considered as the along and cross-valley wind components directly. The along and

cross-valley wind components are the wind components parallel and perpendicular to the valley center line (described in Sect.

2.2.1).175

We use the vector Ai = x(xi+3−xi−3) +y(yi+3− yi−3) to describe the local orientation of the valley at ith grid point on

the valley center line. Here (xi,yi) denote the coordinates of the ith grid point on the valley center line in the inner model

domain grid. Three grid points before and after the actual location are used to smooth out the sharpest turns in the valley center

line. Here we write the horizontal wind in Cartesian coordinates, V = xu+yv, where u and v refer to the zonal and meridional
1Mountain tops reaching above 8000 m in the inner domain (d04) of the simulation; Mt Everest, Kanchanjunga, Lhotse, Makalu, Cho Oyu
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wind components. The along-valley wind component at the valley grid point i, AVWi, is then calculated using Eq. 2:180

AVWi =
Ai

|Ai|
·V i =

ui(xi+3−xi−3) + vi(yi+3− yi−3)√
(xi+3−xi−3)2 + (yi+3− yi−3)2

. (2)

The cross-valley wind component is calculated using the same approach. Here the cross-valley wind is perpendicular to the

along-valley wind but it is calculated at the slopes, 5 to 10 grid points away from the valley center line. The grid points on both

slopes are selected to have the same elevation gain with respect to the valley center line height and thus can differ in horizontal

distance from the center line. The wind component, describing the cross-valley winds at the slopes located around the ith grid185

point in the valley center line is calculated using Eq. 3:

CVWi =
(

z× Ai

|Ai|

)
·V i =

−ui(yi+3− yi−3) + vi(xi+3−xi−3)√
(xi+3−xi−3)2 + (yi+3− yi−3)2

. (3)

3 Overview of the topographic characteristics of the four valleys

The four valleys considered in this study, and their center lines identified by the algorithm described in Sect. 2.2.1, are marked

with yellow lines in Fig. 1b. The valleys are located along the southern slope of the Nepalese Himalayas and they are called190

Gaurishankar, Khumbu, Makalu and Kanchanjunga, listed from west to east. The valleys are roughly north-south orientated

and are inclined towards the north so the valleys face south. Figure 2 gives an overview of the topographic characteristics

along each of the four valleys based on the diagnostics defined in Sect. 2.2.1. All of the valleys have a similar degree of valley

narrowing (decrease in valley width) from the valley entrance towards the valley top (blue lines in Fig. 2). The Khumbu valley

is an exception as the valley becomes broader (i.e. the valley width increases) from the along-valley grid point 40 (horizontal195

axis in Fig. 2b), at the valley floor elevation of 3000 m, towards the valley top (along-valley grid point 0). The length-scale of

the valleys in the along-valley direction is fairly similar. Gaurishankar is the shortest valley at approximately 80 km whereas

Makalu is the longest valley with a horizontal length of approximately 120 km in the along the valley direction from the valley

entrance to the valley top (distance along the valley center line from blue to yellow cross).

The valleys can be roughly divided in two groups based on their topographic characteristics: the two westernmost valleys,200

Gaurishankar and Khumbu (Figures 2a–b), and the two easternmost, Makalu and Kanchanjunga (Figures 2c–d). Makalu and

Kanchanjunga have rather flat valley floors from the valley entrance into the valley with less than 1 degrees inclination (brown

shading in Fig. 2c–d). After 60 grid points (approximately 60 km) into the valley, the valley floors start to incline towards the

valley top. In the Makalu valley, the valley floor elevation increase from 500 to 4000 m.a.s.l from grid point 120 to grid point

30 with the slope varying between 0–6 degrees. In the Kanchanjunga valley, the floor inclination ranges between 1–3 degrees205

in the top-half of the valley, between the grid points 20 and 60. In contrast, the Gaurishankar and Khumbu valleys both have a

continuous increase in the inclination that increases from 2 degrees (along-valley grid points 80-100) to 5 degrees towards the

valley top.

The valley depth (the difference between the ridge and valley center line heights) is lowest in the Gaurishankar valley. The

valley depth is shown by the purple line in Fig. 2 with the values on the right-hand side vertical axes. In Gaurishankar, the210
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valley depth reaches around 2500 m whereas the valley depth in the other three valleys is larger and is in the range 3500–4000

m. In the portions of the Makalu and Kanchanjunga valleys where the valley floor is flat, the valley depth increases at a constant

rate from the valley entrance towards the valley top. In the Kanchanjunga valley, the approximately constant increase continues

until the valley top. In the Gaurishankar and Khumbu valleys, the valley depth increases are not as gradual but still the valleys

get deeper from the valley entrance towards the valley top.215

The valley entrances are significantly different between the valleys. The up to 1000 m high and 10 km wide topographic

barrier in the along-valley direction lies perpendicular to the entrances of the Gaurishankar and Khumbu valleys (around grid

point 120 in Figures 2a–b). The barrier has an inclination of up to 10 degrees on both the northern and southern slopes of the

barrier. The entrance into the Makalu and Kanchanjunga valleys are, in contrast, open without any such obstacle.

To summarise, the two westernmost valleys (Gaurishankar and Khumbu, Figures 2a–b) have inclined valley floors throughout220

the length of the valley and an 1 km high perpendicular barrier between the valley entrance and the plain instead of an open

entrance, when comparing to the two easternmost valleys (Makalu and Kanchanjunga, Figures 2c–d) that have a 40 km long

flat portion into the valley from the open valley entrance.

4 Results

The wind speed and direction above the valleys, and particularly at ridge height, can influence the winds within the valleys225

(Whiteman and Doran, 1993; Lai et al., 2021). Therefore, we first analyse the winds at 400 hPa. The large-scale flow above

the valleys changed from northerlies (17th Dec) to north-westerlies (18th Dec) and to westerlies (19-21th Dec), which is seen

in Fig. 3, where the red rectangular denotes the location of the inner domain d04. The 400-hPa wind speed is highest during

18-20th Dec with 40-50 m s−1 winds and lowest during 18th Dec with 20-30 m s−1 winds. The sub-tropical jet was located

south-east of the inner domain (d04) location during the 5 day simulation period except during 19th Dec when the jet was230

located above the valleys.

Daytime up-valley winds are found in all of the four valleys on each day of the simulation (Fig. 4 - discussed in detail in

Sect. 4.1). The strongest daytime winds in the valleys are found around the valley center lines (white dashed lines in Fig. 4)

and have magnitudes of up to 10 m s−1. The up-valley winds spread also into the smaller valleys branching off from the main

valleys, but are weaker than the up-valley winds in the main valleys.235

The large-scale northerly winds at upper levels channel into the valleys, especially in the northernmost and thus highest

parts of the valleys Gaurishankar, Khumbu and Makalu, during the 17th Dec which is seen as strong down-valley near-surface

winds during the day (Fig. 4) and during the night between the 17th and 18th Dec (not shown). Up to 25 m s−1 near-surface

down-valley winds are found in the tops of the valleys where the valley floors are at 4000–5000 m above sea level. The tops of

the Gaurishankar, Khumbu and Makalu valleys are favorable for large-scale northerlies to channel into the valley atmosphere.240

The northerlies penetrate into the valley atmosphere through the gaps and open south-north orientated structures surrounding

the top of the valley. Due to the interruption of the thermally driven winds by the large-scale winds on 17-18th Dec, the analysis

mostly concentrates on the 20–21st Dec in the following sections. The easternmost valley, Kanchanjunga, is an exception here
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Figure 2. Height profiles (brown shading) of the valley center lines (yellow lines in Fig 1b) and the ridge lines (red dashed lines) correspond

to the values on the left-hand y-axis. Cross-valley width at an elevation of 1000 m above the valley center line is shown with the blue line.

The valley depth is described as the height difference between the center line and average of the ridge lines which is shown in purple. The

lines for width and depth correspond to the values on the right-hand y-axis. Each panel shows one valley: (a) the Gaurishankar Valley (most

westerly valley), (b) the Khumbu Valley, (c) Makalu and (d) Kanchanjunga.

since it is surrounded by high-enough ridges on the sides and at the valley top (Fig. 2d) that shelter the valley atmosphere from

the large-scale flow channelling. Up to 25 m s−1 near-surface winds are found on the ridges surrounding the Kanchanjunga245

valley, but within the valley atmosphere the near-surface winds stay below 10 m s−1 and flow in the up-valley direction.

The daytime valley winds propagate into the entrances of the two westernmost valleys (Gaurishankar and Khumbu) over the

perpendicular topographic barrier from the plain (Figures 1b, 2a-b). Since we focus on the along-valley winds, it is sensible

to extend the valley center lines towards the plain over this barrier instead of following the topography towards the south-east

(Fig. 1b). In this way, the structure of the flow in plain-valley interaction can be studied better (cross-sections are discussed250

later in Sect. 4.2).
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Figure 3. 400-hPa wind speed (shading) and direction (white vectors) in the d01 domain at 12 local time (noon) each day of the simulation.

Black solid lines show the WRF simulation topography (m.a.s.l) with a contour interval of 1000 m. The red box mark the location of the

inner domain d04.

4.1 Temporal evolution of the along-valley and cross-valley winds

The along-valley wind component is calculated based on Eq. 2 for four different parts of each valley. These locations are

shown by crosses in Figures 1b and 2 and the colors refer to the along-valley wind timeseries in Fig. 5. The along-valley wind

component in Fig. 5 is the average of 5 grid points along the valley center line around the crosses to describe the wind in a larger255

part of the valley, instead of only at one grid point. The four locations in the valleys represent the valley entrance (orange),

two location in the middle of the valley (purple and red) and the valley top (blue). The description of the along-valley winds is

mostly based on the 20-21st Dec when the thermally driven winds were well defined in the valleys, but also the 17-19th Dec

are considered in the text.

The along-valley winds have a clear diurnal cycle with well defined daytime up-valley winds and weak or absent nocturnal260

down-valley winds (Fig. 5). The up-valley winds start developing around 9 local time (LT), peaks in magnitude around 15 LT

and cease around 18 LT in all of the four valleys. The onset and offset of the daytime up-valley winds occurs approximately 2

hours after the sunrise (6:50 LT) and 1 hour after the sunset (17:12 LT), respectively. The along-valley winds at night are weak

in all four valleys and generally remain in the up-valley direction (night-time shaded in Fig. 5). During the 17-18th Dec the
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Figure 4. Wind speed (shading) and direction (black vectors) on the lowest vertical level (approximately 25 m above surface) in the d04 do-

main. The wind is averaged over 12-15 local time for each day of the simulation. Black solid contours show the WRF simulation topography

(m.a.s.l) with a contour interval of 1000 m. Valley center lines are shown by the white dashed lines.

diurnal cycle is more interrupted than during the 19-21st Dec and the simulated night-time down-valley winds are caused by265

the channelling of the northerlies into the valleys.

In the Gaurishankar valley, typically the daytime up-valley winds have maximum values of 5, 10, 5 and 4–6 m s−1 in the

four marked locations, listed from the valley entrance to the valley top (Fig. 5a). During night-time, the winds are around 2 m

s−1 and directed up-valley in the top half of the valley and less than 1 m s−1 up or down-valley in the lower half. In the top of

the Gaurishankar valley, the along-valley winds do not show a clear diurnal cycle except on the last day of the simulation. In270

other parts of the valley, the timing of the diurnal cycle is relatively similar on all days excluding the 17th Dec.

In the Khumbu valley, typically the daytime up-valley winds have maximum values of 3, 5, 4–5 and 2–3 m s−1 in the four

marked locations, listed from the valley entrance to the valley top (Fig. 5b). The wind speed is weakest in the valley top and

strongest in the mid-part of the valley. During night-time, the along-valley winds remain mostly in the up-valley direction with

magnitudes less than 2 m s−1 except in the valley top where, on the night between the 18th and 19th, the along-valley wind275

is weak (< 1 m s−1) and in the down-valley direction. The along-valley variation in the timing of the diurnal cycle is small in

the Khumbu valley. Day-to-day variation in the along-valley winds is small, the along-valley wind speeds vary less than 2 m
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Figure 5. Along-valley wind speed in different parts of each of the four valleys (crosses of the same colors in Figures 1 and 2) on the fourth

model level (approximately 300 m above surface). The numbers in the legends refer to the along-valley grid points as plotted on the x-axes

of Fig. 2. Positive values of wind speeds refer to up-valley winds. Local time is shown on the x-axes. The data is plotted every 30 minutes.

s−1 in each part of the valley and the on-set and off-set of the up-valley winds varies by less than an hour between the different

days.

In the Makalu valley, typically the daytime up-valley winds have maximum values of 7–8, 6, 5, 2–5 m s−1 in the four marked280

locations in, listed from the valley entrance to the valley top (Fig. 5c). At the valley entrance the night-time winds vary from
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2.5 m s −1 down-valley to 5 m s −1 up-valley. The along-valley winds do not have a clear repetitive diurnal cycle at the valley

top except on the last day of the simulation. The timing of the diurnal cycle varies between the different locations along the

Makalu valley. In the top-mid-way of the valley (red timeseries in Fig. 5c, grid point 90) the on-set, peak in magnitude, and

off-set of the up-valley winds is similar as in the other valleys. At the valley entrance, the on-set and peak in magnitude occur at285

the same time as in the other valleys but the decay of the up-valley winds is slower; on 20th and 21st Dec the along-valley wind

component turns down-valley only around 02-03 LT in the night. In the middle of the valley (purple timeseries, grid point 120),

the on-set of the up-valley winds occur at the same time as in the other valleys but there are two maximums, the first around

15LT and the second time around 18LT. The decay of up-valley winds in this location is thus delayed by 3 hours compared to

the other valleys.290

In the Kanchanjunga valley, typically the daytime up-valley winds have maximum values of 7–8, 6, 7, 5 m s−1 in the four

marked locations, listed from the valley entrance to the valley top (Fig. 5d). During night-time the along-valley winds stay

directed up-valley, ranging from 1 to 5 m s−1 during 20-21st Dec. The daytime up-valley winds vary only by 2–3 m s−1 along

the valley and the on-set and off-set times are similar throughout the valley. The amplitude of the diurnal cycle is slightly larger

in the middle of the valley than at either the valley entrance or valley top. The up-valley winds extend all the way to the valley295

top on each day of the simulation. The decrease in the daytime up-valley winds is slower at the valley entrance compared to

the other parts of the valley.

In all of the four valleys, the strongest up-valley winds occur in the entrances of the Makalu and Kanchanjunga valleys and

30 km into the Gaurishankar valley (around the along-valley grid point 70). In the Makalu and Kanchanjunga valleys, these

strong valley entrance jets could potentially be explained by the local strong temperature difference between the valley and the300

plain, which would result as forcing of plain-to-valley winds.

The peak magnitude in winds in the Gaurishankar valley is located near a narrow (in the cross-valley direction) part of the

valley. The strong winds in this location can be explained by the Venturi effect (Whiteman, 2000). The local narrower of the

valley topography accelerates the wind speed through this gap assuming a constant along-valley massflux on both sides of the

narrowing part. The wind speed above this location, 200 m higher than the model level that is shown in Fig. 5, is already reduced305

by half (not shown). The reduction in the wind speed with height is not as strong in the other locations of the Gaurishankar

valley.

As an overview, excluding the parts of the valleys without persistent diurnal cycles in wind speed and the narrow gap

channelling, the daytime up-valley winds are 2–3 m s−1 stronger in the Makalu and Kanchanjunga valleys compared to in

the Gaurishankar and Khumbu valleys. The Kanchanjunga and Khumbu valleys have the most persistent diurnal cycle in the310

up-valley winds in this 5 days simulation.

The cross-valley winds are shown in Fig. 6 in a similar manner to the along-valley wind components. However, whereas

the along-valley winds were analysed in the centre of the valley, the cross-valley winds are analysed separately on both the

east and west slopes of the valleys. The cross-valley wind component is considered here as a wind component perpendicular

to the valley center lines (introduced in Sect. 2.2.1) thus perpendicular to the along-valley wind component directly above the315

valley centre line. Positive values for the cross-valley wind component on both slopes refer to up-slope winds. However, the
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Figure 6. Cross-valley wind speed in different parts of each of the four valleys (see Fig 1) on the lowest model level (approximately 25 m

above surface). Panels in the left column are for grid points located on the western slope of the valleys and panels in the right column for

grid points on the eastern slopes. Local time is shown on the x-axes. The cross-valley wind component on the western slope is multiplied by

−1 to present both slopes in a manner that positive values refer to an up-slope wind. The data is plotted every 30 minutes.

cross-valley wind component is not always directed in exactly the same direction as the local slope on the valley sidewalls.

This is because the sidewall slopes are not always perpendicular to the valley centre line.

A clear diurnal cycle of the up-slope cross-valley winds is only found in some parts of some valleys. The up-slope winds

occur most often in the middle parts of the valleys, seen as red and purple timeseries in Fig. 6. In the locations with clear320

diurnal cycles, the daytime up-slope winds are typically less than 3 m s−1 in magnitude and their vertical extent is less than

300 m (not shown).
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A clear diurnal cycle of cross-valley winds on both the west and east slope at the same point is found only in the middle-parts

(red and purple timeseries) of the Makalu and Kanchanjunga valleys during the 19-21st Dec (Fig. 6e-h). These locations refer

to along-valley grid points 90 and 120 in Makalu and 55 and 90 in Kanchanjunga. The up-slope winds start to develop right325

after sunrise at around 7 LT (sun rise 6:50LT), peak in magnitude around noon, and cease around 15LT.

One of the analysed locations, mid-way of Kanchanjunga (red timeseries in Fig. 6d), show signs of a single circulation cell.

Such a single circulation cell spans the whole cross-valley direction and can be identified if there are daytime up-slope winds

at one slope and down-slope winds at the other slope.

Overall, from the WRF simulation, there is not strong evidence of well-defined thermally driven circulation in the cross-330

valley direction in the four valleys. However, the cross-valley winds shown in Fig. 6 are not the pure slope wind circulation,

since the slope elevation is not necessarily aligned perpendicularly to the valley center line. Also, the lowest three model

levels at heights 25m, 90m and 190 m may not capture the thermally driven cross-valley circulation, due to the shallower

nature of slope winds. Up to 10 m s−1 wind speeds are simulated at the surface at higher elevations (i.e in the top parts of the

Gaurishankar and Khumbu valleys, Fig. 6a-d). Some of the chosen grid points for cross-valley analysis may be located outside335

the valley atmosphere and thus may show strong near-surface winds due to impact of large-scale winds.

4.2 Vertical structure of the along-valley winds and potential temperature

The vertical structure of the along-valley wind component and potential temperature above the valley center lines are plotted in

Figures 7 and 8 on 20th Dec at 9LT and 15LT, respectively. The wind component parallel to the valley center lines is plotted on

each model level. The large variability in the along-valley direction in the along-valley wind speed above the up-valley wind340

layers arises because winds above the valley atmosphere are stronger, and their direction influenced by the large-scale flow

and not the local topography. Since this study concentrates on the daytime up-valley wind layer, the colour map for the wind

shading is not optimal for the wind speeds exceeding 10 m s−1. The cross-sections show the whole length of the valley center

lines (yellow lines in Fig. 1b), which means that the far right-hand side of all the panels in Figures 7–8 are the wind component

and potential temperature above the plain.345

In the morning (20th Dec 09LT - 2 hours and 10 minutes after sunrise), the valley atmospheres are mainly characterised

with weak up-valley winds (Fig. 7). The wind speed is mostly less than 2 m s−1 in the valleys Gaurishankar and Khumbu and

the flow depth above the valley center line is 500-1000 m. In the Makalu and Kanchanjunga valleys the wind speed is up to

4 m s−1 and the flow depth is 1000-1500 m above the valley center lines. The up-valley winds exceeding 3 m s−1 cover half

of the along-valley distance in Kanchanjunga where as in Makalu they are found only at the valley entrance. Some parts of350

the valleys have weak (< 2 m s−1) near-surface down-valley winds which flow in shallow layers of less than 200 m. These

weak down-valley winds are found in all of the valleys but they only cover a minor share of the along-valley distance and the

up-valley winds are the dominant feature of the valley atmospheres even in the morning.

In the morning (20th Dec 09LT), the potential temperature difference between the valley atmosphere and the plain is small

in the layer where the up-valley winds flow (Fig. 7). This is seen as mostly horizontal isentropes between the valley atmosphere355

and the air above the plain i.e. the lowest 1500 m from the ground. In all of the valleys, and especially in their sloped parts,
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the isentropes turn towards the surface in a layer of 100-200 m, meaning that the valley floor is heated even in the morning at

09LT. In the Kanchanjunga valley (Fig. 7d), the isentropes tilt towards the surface already in the morning all the way in the

valley in a layer of about 300 m deep, meaning the valley atmosphere is warmer than the air above the plain. This is consistent

with the stronger up-valley winds at this time in Kanchanjunga compared to the other valleys.360

In the afternoon (20th Dec 15LT), the up-valley winds flow in the valley atmosphere all the way to the top of the valley (blue

crosses in Fig. 8) in all of the four valleys. The up-valley wind speeds vary from 2 to 10 m s−1 in the afternoon (described in

details in Sect. 4.1). The up-valley wind maxima is found around the same height in all of the valleys which is around 200–300

m above the valley center line. In the lower parts (from the yellow crosses to purple crosses) of the valleys, the up-valley winds

flow in a deeper layer compared to the upper parts (from red crosses to blue crosses). Figure 8 shows that in the Kanchanjunga365

valley the up-valley wind speed and depth are the most consistent along the valley. The valley entrance jets are seen around the

grid points 140-160 in the Makalu valley and 100-120 in the Kanchanjunga valley. The narrow gap flow in the Gaurishankar

valley (discussed in Sect. 4.1), around the purple cross (grid point 70), is seen as a relatively small area of up-valley winds

exceeding 10 m s−1. In the top of the Gaurishankar and Khumbu valleys, the depth of the up-valley wind layer decreases to a

few hundred meters yet still extends all the way to the top of the valleys. In the afternoon, all of the valley atmospheres are 3–5370

K warmer in the mid-way of the valley (purple crosses) compared to the same altitude above the plain (Fig. 8).

The plain-to-valley winds flow over the 1000 m high barrier at the entrances of the Gaurishankar and Khumbu valleys in

a shallow layer of less than 500 m (grid points 110-130 in Gaurishankar and 120-140 in Khumbu). The plain-to-valley winds

basically stop between lee side of the barrier and the valley entrance (around grid point 110). Both in the morning (Fig. 7a-b),

and in the afternoon (Fig. 8a-b), the wind component towards the valleys decreases to 1 m s−1 for the whole depth of the375

plain-to-valley wind layer. Along the lee side of the barrier, between the plain and the Gaurishankar and Khumbu valleys, the

isentropes descend and are parallel to the slope (Figures 8a–b ). This results in a warming of 5 K (Gaurishankar) and 3 K

(Khumbu) in the lee of the barrier compared to the base of the barrier over the plain.

Figure 9 shows the potential temperature at 15LT minus the potential temperature at 09LT as a vertical cross-section above

the valley center lines on Dec 20th and 21st. The up to 1.5 K warming between 09 and 15 LT on Dec 20th and cooling between380

09 and 15 LT on Dec 21st in the higher altitudes (> 2000 m above the surface) occurs most likely due to large-scale thermal

advection. The valley atmospheres warm 4–6 K between 09 and 15LT on Dec 20th. The surface-based warming extends to

depths of less than 1000 m in the valleys Gaurishankar and Khumbu and to depths of less than 1500 m in the valleys Makalu

and Kanchanjunga. The strongest warming between 09LT and 15LT is found in the near-surface layer i.e. the closest 100-200

m to the surface. The warmed layer in the valley atmospheres decrease in magnitude and depth towards the top of the valleys.385

Where the valley floors start to incline strongly up towards the tops of the valleys is approximately where the warmed layer

starts to get shallower. Unlike in the other three valleys, the valley floor in the Kanchanjunga valley only starts to incline

strongly close to the top of the valley and the near-surface warming reaches further into the Kanchanjunga valley compared to

the other three valleys.

The qualitative difference between the spatial pattern of the thermal structure of the valley atmospheres on Dec 20th and390

Dec 21st is small (Figures 9 left column compared to 9 right column). The strongest warming is located around same parts of
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the valleys on both days. Considering that the daytime warming is also affected by the large-scale weather particularly above

the valley atmosphere, the vertical extent of the strongest warming in the valley atmospheres is similar between the two days.

The warming is 1-2 K stronger on Dec 21st than on the Dec 20th which is consistent with the up-valley wind speeds being

stronger on Dec 21st compared to Dec 20th (Fig. 5).395

Figure 10 shows the deviation of potential temperature at each along-valley grid point (y-axis) on three model levels from

the two day average of potential temperature during Dec 20-21st. Here we define the amplitude of the diurnal cycle to be the

difference between the maximum and minimum value of θ− θ in Fig. 10.

Figures 9 and 10 show that the diurnal cycle in potential temperature reaches higher up in the valley atmosphere compared

to over the plain. At the lowest model level (approximately 25 m above surface, Figures 10a-d), the diurnal cycle has a larger400

amplitude over the plain (up to 8 K) than in the valleys (4–6 K) but the amplitude decreases rapidly with height over the plain.

At the height of approximately 450 m above surface (model level 4, Figures 10e-h), the amplitude of the diurnal cycle is less

than 1 K above the plain, where as the amplitude reaches up to 3 K in the Gaurishankar and Khumbu valleys and up to 5 K in

the Makalu and Kanchanjunga valleys. The vertical extent of the warming is more evident in the cross-sections shown in Fig.

9, as the layer in which the surface-based warming exceeds 2 K between 09LT and 15LT is hundreds of meters deeper than405

above the valley.

In addition to the qualitative overview of the vertical structure of the along-valley winds and potential temperature field, a

more detailed analysis of how the depth of the daytime up-valley wind layer and the depth of the warmed layer relate to each

other is now considered. The depth of the up-valley wind layer is defined based on the model level at which the clear diurnal

cycle vanishes in the along-valley wind timeseries (not shown but one model level shown in Fig. 5). Similarly, the vertical410

extent of the amplified diurnal cycle in potential temperature is based on the model level at which the daily range in potential

temperature is the same as over the plain (not shown but three model levels shown in Fig. 10).

The depth of the up-valley wind layer and the vertical extent of the amplified diurnal cycle in potential temperature were

defined based on the model level at which the clear diurnal cycle vanishes compared to the plain in the along-valley wind

timeseries (not shown but one model level shown in Fig. 5) and in the amplitude of the diurnal cycle of potential temperature415

(not shown but three model levels shown in Fig. 10), respectively.

In the Gaurishankar and Khumbu valleys, the diurnal cycle in potential temperature and the up-valley winds are found in a

layer 600–1200 m deep above the valley center lines, whereas in Makalu and Kanchanjunga the corresponding depth is 1000-

1500 m. In all of the valleys, both the vertical extent of the diurnal cycle in potential temperature and the layer of up-valley

winds is deepest in the lower parts of the valleys (yellow and purple crosses). The up-valley wind layer is deepest in the portion420

of the Makalu (grid points 120-160) and Kanchanjunga (grid points 70-120) valleys with flat valley floor, where the flow depth

reach up to 1500 m, and shallowest in the the top of the valleys Gaurishankar (grid points 20–40) and Khumbu (grid points

30-50), where the flow depth is less than 600 m.

The vertical extent of the amplified diurnal cycle in temperature seems to correlate with the up-valley wind layer depth in the

valleys; where the amplified diurnal cycle in temperature reaches higher, also the daytime up-valley winds reach higher. When425

the temperature in the valley atmosphere rises more compared to the air above the plain during daytime, from the hydrostatic
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law and ideal gas law combined one obtains the qualitative result that pressure at the same height must be smaller in the valley

than over the plain. Thus, if the winds are driven by the pressure gradient force, the depth of the heated layer (i.e. in the valley

atmosphere) would correlate with the depth of the daytime up-valley wind layer.

5 Discussion430

We now attempt to understand the differences in the daytime up-valley winds between the four valleys, and along the individual

valleys, and relate these differences to the differences in the valley topographies. To do this, we relate our results to previous

studies which have used highly controlled idealised simulations to quantify the impact of valley geometry on valley winds. We

also assume that since all four valleys are under similar large-scale forcing that the differences in the along-valley winds are

mainly due to differences in the valley topographies.435

Two features that differ significantly in the valley topographies are the along-valley variation of the valley floor inclination

and the topography of the valley entrances. As summarised in Sect. 3, the two westernmost valleys, Gaurishankar and Khumbu,

have inclined valley floors throughout the length of the valley (1–2 degrees in the lower part of the valleys and 2–5 degrees in

the upper part) and an 1 km high perpendicular barrier between the valley entrance and the plain. Makalu and Kanchanjunga,

on the other hand, have a 40 km long almost flat portion close to the valley entrance and no barrier.440

The daytime up-valley winds are both weaker and flow in a shallower layer in the parts of the valleys where the valley

floor has a steep inclination (up to 5 degrees). Wagner et al. (2015) studied the influence of valley geometry (floor inclination,

width, depth, valley cross-section narrowing) on thermally driven flows using idealised numerical simulations. When they

compared two straight valleys, one with a flat valley floor and the other with an inclination of 0.86 degrees in the valley floor,

they found that the daytime up-valley wind speed increased by a factor of 3.0 in the valley with inclined floor. Wagner et al.445

(2015) suggested that the increase in wind speed was due to both the reduction of the valley volume by 50% and to additional

buoyancy forcing from the slope wind effect. Our finding, that the strongest up-valley winds occur in the flatter parts of the

valleys, appears to contradict the result of Wagner et al. (2015). However, in the four Himalayan valleys, the ridge height also

increases along the valley whereas in the idealised valleys Wagner et al. (2015) studied the ridge height was constant along

the valley. Therefore, in the Himalayan valleys, the steeply inclined valley floors do not necessarily lead to a reduced valley450

volume and enhanced topographic amplification factor along the valleys. In addition, the valley floors slope much more steeply

in the Himalayan valleys compared to the valleys in Wagner et al. (2015). This may mean that the dominate driving mechanism

of the up-valley winds differs in our simulations compared to in the simulations of Wagner et al. (2015). Specifically, in steeply

inclined valleys, the buoyancy mechanism that drives up-slope winds in classical mountain wind theories (Whiteman, 2000),

may become more dominate than valley-wind mechanism. The buoyancy mechanism drives shallower and weaker winds, such455

as the typical cross-valley slope winds, compared to the valley wind mechanisms. Shifting the dominant driving mechanism

from the valley volume effect to the buoyancy mechanism, instead of combining their forcing, would explain the shallower and

weaker up-valley winds in the steeply inclined parts of the four Himalayan valleys.
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Figure 7. Vertical cross-section of potential temperature (grey contours) and the along-valley wind component (shading) above the valley

center lines (yellow lines in Fig 1) on 20th Dec at 09 local time. Potential temperature is plotted with a contour interval of 1 K. Positive

values for the along-valley wind refer to up-valley winds. The mean of the two ridge heights is shown by the black dashed lines.
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Figure 8. Vertical cross-section of potential temperature (grey contours) and the along-valley wind component (shading) above the valley

center lines (yellow lines in Fig 1) on 20th Dec at 15 local time. Potential temperature is plotted with a contour interval of 1 K. Positive

values for the along-valley wind refer to up-valley winds. The mean of the two ridge heights is shown by the black dashed lines.
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Figure 9. Vertical cross-section of potential temperature change above the valley center lines (yellow lines in Fig 1b) between 09LT and

15LT on Dec 20th (left column) and 21st (right column). Positive values indicate higher potential temperatures at 15 LT than at 9 LT.

Instead of open valley entrance, the valleys Gaurishankar and Khumbu have the 1 km high barrier between the valleys and

the plain. As discussed in Sect. 4.2, the daytime plain-valley winds cross this barrier in a shallow layer of a few hundred meters.460

In contrast, in the Makalu and Kanchanjunga valleys, the plain-to-valley winds flow in layers as deep as 1000–1500 m. The
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up-valley winds basically stop on the northern side of the barrier close to the valley entrances of Gaurishankar and Khumbu.

The up-valley wind propagation into the valley could be significantly interrupted by the flow forced to flow over the 1 km

high barrier. The flow characteristics over this barrier are similar to what Stull (1988) describes the down-slope wind storms

associated with hydraulic jump. The strong and shallow flow over the barrier is followed by weaker horizontal winds lee-side465

after the barrier.

Bianchi et al. (2021) suggested that the daytime up-valley winds in the Khumbu valley would transport aerosol precursors

from the bottom of the valley to the free troposphere. During this transport, these gases are oxidised and therefore able to form

new particles and influence the climate once they are in the free troposphere. They combined in-situ aerosol observations and

numerical model simulations with the high resolution WRF-model and the Langrangian dispersion model FLEXPART. They470

propose that other valleys on the southern slope of the Himalaya would also act as sources of free tropospheric aerosol. We

show that regarding the daytime up-valley winds, the Khumbu valley is not an exception compared to the other major valleys

in this region. Based on the along-valley winds, aerosol and its precursors could be ventilated into the free troposphere from

the other three valleys as well.

6 Conclusions475

The local valley winds in the Nepal Himalayas were studied using a high-resolution WRF simulation. The horizontal grid

spacing in the inner domain is 1 km and the model is run with 61 vertical levels. The simulation covers a 5 day period in

December 2014. Four major valleys are present in the inner-most model domain and the characteristics of the along-valley

winds that develop in each of these valleys were analysed and compared to each other. These Himalayan valleys have very

different topographies compared to the much more extensively studied valleys in the European Alps and Rocky Mountains.480

Specifically, the floor of the Himalayan valleys studied here is steeply inclined and rises from less than 500 m.a.s.l to 4000-5000

m.a.s.l in 100 km in the along-valley distance.

The simulation is evaluated using meteorological observations from three automatic weather stations in the Khumbu valley.

Overall, the model manages to simulate the diurnal cycle of the winds that was evident in the observations. The along-valley

wind characteristics in the Khumbu valley were found to be similar to what previous research has shown both in observational485

(Inoue, 1976; Ueno and Kayastha, 2001; Ueno et al., 2008; Bollasina et al., 2002; Shea et al., 2015) and model-based studies

(Potter et al., 2018, 2021).

Daytime up-valley winds are found in all of the four valleys during the simulated 5 day period. The night-time along-valley

winds are weak in strength and flow mostly in the up-valley direction. During large-scale northerlies (Dec 17th-18th), the daily

cycle of along-valley winds is interrupted more compared to the days with large-scale westerlies (Dec 20th-21st) especially490

in the tops of the valleys Gaurishankar, Khumbu and Makalu. The Kanchanjunga valley is an exception in the valleys, as the

daytime up-valley winds reach the top of the valley even during the days with large-scale northerlies. The night-time down-

valley winds are found more during the large-scale northerlies, which is most likely due to channelling of above-valley winds

into the valley atmosphere.
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The daytime up-valley winds vary between the valleys and their parts both in strength and flow depth. The daytime up-valley495

winds in the two westernmost valleys, Gaurishankar and Khumbu, are shallower and weaker than in the two valleys in the east,

Makalu and Kanchanjunga. These two group of valleys can be separated by their topography characteristics: the valleys in the

west have a continuous inclination in the valley floor and there is an 1 km high perpendicular mountain barrier between the

valley entrance and the plain. The two valleys in the east have a 40 km (Makalu) and 60 km (Kanchanjunga) portion with flat

valley floor from the open valley entrance into the valley.500

Steep inclination in the valley floor (2–5 degrees) is associated with weaker and shallower up-valley winds compared to

locations with nearly flat valley floor (<1 degrees inclination). The perpendicular barrier at the valley entrance potentially

interrupt the daytime plain-to-valley wind propagation which is seen as weaker daytime up-valley winds at the valley entrance

and potentially leading to weaker up-valley winds further up in the valley.
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Figure 10. Diurnal variations in potential temperature in the valleys at the model levels 0 (a-d), 4 (e-h) and 8 (i-l) during the last two days of

the simulation (20-21st Dec 2014). The model levels refer to heights of a-d) 25 m, e-h) 450 m and i-l 1250 m above the surface. x-axes show

the deviation from the two day mean potential temperature of that model level in each grid point located on the valley center line. y-axes are

the grid points at the valley center and the crosses on the right hand side of each figure denote the location of the grid points marked on same

colors in Figures 1b and 2.
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Figure A1. Comparison of wind and temperature between WRF model and observations done in a) NCO-P b) Lukla c) Namche.
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